
Transactions of the ASABE

Vol. 52(2): 539-542  � 2009 American Society of Agricultural and Biological Engineers ISSN 0001-2351 539

 

BIODIESEL FEEDSTOCK AND BLEND LEVEL SENSING USING

VISIBLE LIGHT SPECTRA AND NEURAL NETWORK

A. Zawadzki,  D. S. Shrestha

ABSTRACT. Even after biodiesel meets ASTM D6751 specifications, biodiesels from different feedstocks may have different
properties. Biodiesel blend level influences the fuel properties, such as cloud point and emissions. Therefore, whether for
performance reasons or other reasons, it is often required to detect the biodiesel percentage in a diesel‐biodiesel blend. This
research used a spectrophotometer to scan the blends of U.S. No. 2 diesel and biodiesel from three different feedstocks
(rapeseed, soybean. and mustard oil) in the visible wavelength range of 380‐530 nm. It was found that the shape of the
absorption curve varied according to biodiesel feedstock; however, relative absorbance was proportional to the blend level.
If the absorbance of the parent biodiesel can be measured, such as in a blending facility, then a single wavelength between
470 and 490 nm could be used to measure the biodiesel blend level with ±1.85% standard error at 95% confidence interval.
A neural network was trained to measure the blend level when the parent biodiesel spectrum was unknown. It was concluded
that even if the absorption spectrum of the parent biodiesel is not known, the absorption spectrum of the blend from 380‐
530 nm can be used along with a neural network to detect the biodiesel feedstock and for rough blend level estimation.
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ll vegetable oils and animal fats are primarily tri‐
glycerides (triacylglycerols), which are esters of
glycerol and long‐chain fatty acids. Biodiesel is
produced by transesterification of the triglycer‐

ides with alcohol, usually methanol or ethanol. Chemically
speaking, biodiesel is the mono‐alkyl esters of the fatty acids.
The composition of vegetable oil varies with the plant source
(Van Gerpen et al., 2006). Since biodiesel is made primarily
from vegetable oil, its properties also depend on the fatty acid
profile and other constituents. Biodiesels from different feed‐
stock have different properties in terms of their cold weather
properties and emissions characteristics (Peterson et al.,
2000).

Average refined bleached and deodorized vegetable oil
contains about 95% triacylglycerols, 2% phospholipids,
1.5% unsaponifiable matter, 0.5% free fatty acids, and 1%
trace metals. Composition of crude soybean and rapeseed oil
is shown in table�1.

Natural fats and oils from plants and animals contain pig‐
ments exhibiting visible absorption (O'Connor, 1960). These
coloring pigments are primarily chlorophyll, phytosterols,
and carotenoids (part of the unsaponifiable matter). The con‐
centration of these pigments varies among different oils and
also from crude to processed oil. For example, the chloro‐
phyll and unsaponifiable matter content of crude soybean and
rapeseed oil are different (table 1), and it is expected that the
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light absorption pattern of these two oils in the visible spec‐
trum will be different. On the other hand, pure aliphatic acids,
esters, water, and glycerides are colorless substances and do
not affect absorption in the visible range. Despite the fact that
absorption in the visible range of light is not affected by the
primary constituents of biodiesel, it is possible to distinguish
biodiesel feedstocks and blends by utilizing the light absor‐
bance of the coloring pigments.

Biodiesel must meet the ASTM D6751 (ASTM, 2007)
quality standard in the U.S. (or EN 14214 in Europe), which
also defines the test methods for each of the specified biodie‐
sel properties. However, ASTM D6751 does not specify the
required cloud point (CP) of biodiesel. Differences in fatty
acid profiles and the presence of impurities cause CP of bio‐
diesels to vary. For instance, CP for palm oil biodiesel could
be as high as 16°C, compared to -3°C for canola biodiesel
(Mittelbach and Remschmidt, 2005). When biodiesel is
blended with diesel fuel, blend level as well as choice of feed‐
stock affects CP of the blended fuel. Therefore, in order to es‐
timate CP of blended biodiesel, determination of both the
blend level and the type of parent feedstock are important.

It has been reported that the actual biodiesel content in
fuel sold at gas stations can be significantly different from the
nominal blend level. A 2% nominal blend was found to actu‐
ally contain anywhere between 0% and 8% biodiesel (Ritz

Table 1. Constituents of soybean and
rapeseed oil (Przybylski and Mag, 2002).

Components Soybean Rapeseed

Triacylglycerols (%) 93.0 to 99.2 91.8 to 99.0
Phospholipids (%) Up to 4.0 Up to 3.5

Free fatty acids 0.3 to 1.0 0.5 to 1.8
Unsaponifiable matter (%) 0.5 to 1.6 0.5 to 1.2

Tocopherols (ppm) 1700 to 2200 700 to 1000
Chlorophyll (ppm) Trace 5 to 55

Sulfur (ppm) Nil 5 to 35
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and Croudace, 2005). There are several reasons why the actu‐
al blend level may differ from the specified level. For
instance, if biodiesel is blended at a temperature less than
5.6°C above its cloud point, it does not mix well with diesel,
causing a rich mixture in one portion of the tank versus a lean
mixture in another portion (NBB, 2005). Other reasons for
the discrepancy may include profit‐driven fraud and involun‐
tary mixing of diesel into the blend to bring down the overall
blend level of biodiesel. Biodiesel is usually sold at a higher
price than diesel fuel; therefore, the price of fuel is dependent
on the blend level.

Knothe (2001) showed that near‐infrared (NIR) spectros‐
copy and nuclear magnetic resonance (NMR) can be used to
detect biodiesel blend level. However, the NMR method de‐
pends on the biodiesel fatty acid profile, and hence knowl‐
edge of the biodiesel feedstock is required before this method
can be used. In addition, using NMR only to detect blend lev‐
el may not be cost‐effective. For NIR spectroscopy, Knothe
suggested using wavelengths around 1665 nm or 2083‐
2174 nm. Since aromatic compounds produce strong and
sharp infrared bands due to their relatively rigid molecular
structure (Workman, 2001) and diesel fuels have varying
amounts of aromatics, between 20% and 35% (Song et al.,
2000), absorbance alone may not directly correlate to the per‐
centage of biodiesel.

Tat and Van Gerpen (2003) used a commercially available
dielectric  fuel composition detector to find biodiesel blend
level. The authors concluded that the sensor appeared to be
usable for the development of a biodiesel flexible fuel vehicle
despite the fact that variability in response between the tested
fuels might cause small errors in the blend level estimates.
Ritz and Croudace (2005) discussed the use of the CETANE
2000 diesel fuel analyzer, a commercial instrument capable
of measuring cetane number, cetane index, total aromatic,
polynuclear aromatic, and biodiesel blend level simulta‐
neously. The instrument uses infrared (IR) absorbance at
5731 nm (1745 cm-1) and 8621 nm (1160 cm-1), targeting at
the C‐O stretch. Since the CETANE 2000 is designed to de‐
tect several fuel parameters simultaneously, it may not be a
cost‐effective solution for a simple blend level detection ap‐
plication. Zawadzki et al. (2007) developed a method of de‐
tecting biodiesel blend using ultraviolet absorption
spectroscopy.

With recent developments in information technology and
the availability of low‐cost optical sensing technology, it may
be well worth exploring the use of visible wavelengths to de‐
tect biodiesel type and blend level. When light is transmitted
through a liquid such as biodiesel, that light is absorbed at
specific wavelengths due to the presence of certain chemicals
within the liquid. By monitoring the light absorption at par‐
ticular known wavelengths, it is possible to identify the con‐
centrations of the chemicals absorbing the light. This
technique could potentially be used to determine biodiesel
feedstocks and blend levels.

The objective of this work was to develop a methodology
to detect biodiesel‐diesel blend level and the type of biodiesel
feedstock by using a visible light spectrum, which is easy to
generate, measure, and implement.

MATERIALS AND METHOD
Biodiesel from each of five different feedstocks (three cul‐

tivars of rapeseed, one of mustard, and one of soybean) were

prepared at the Biological and Agricultural Engineering Lab‐
oratory at the University of Idaho. They are referred to here
as rapeseed methyl ester (RME), mustard methyl ester
(MME), and soybean methyl ester (SME). The biodiesel after
the reaction was water‐washed and dried to remove excess
soap, catalyst, free glycerol, and methanol. The final biodie‐
sel was then tested for ASTM D6751 and found to be within
the specifications.

Blends of 5%, 10%, 20%, 30%, 50%, and 80% of biodiesel
by volume with commercial U.S. No. 2 diesel were prepared.
The absorption spectra of the biodiesels and biodiesel‐diesel
blends without any dilution or solvent were measured using
a general purpose UV/vis spectrophotometer (model DU
520, Beckman Coulter, Fullerton, Cal.) for visible absorption
spectra from 380 to 530 nm. The spectra were recorded at in‐
tervals of 1 nm.

Since each type of biodiesel gave a different absorption
curve, the curve shapes and position features were extracted
to train an artificial neural network. The measured absorption
spectra of the biodiesels from 380 to 530 nm were fitted with
a second‐degree polynomial. It was observed that the shape
and position information of the absorbance curves could be
adequately captured by a quadratic equation.

A three‐layer neural network with a sigmoidal transfer
function in two hidden layers and a linear transfer function in
the output layer was employed to distinguish between the dif‐
ferent kinds of biodiesel blended in different proportion with
regular diesel. Five neurons were used in the first hidden lay‐
er and three in the second one. The number of neurons in each
layer and the number of layers were optimized by trial and er‐
ror. Three coefficients of the best fit quadratic equation for
each curve were used as inputs to the network. The network
had two outputs since there were two expected variables: the
amount of biodiesel in the sample, and the biodiesel feed‐
stock type. The resilient back‐propagation algorithm (De‐
muth and Beale, 1998) was used for network training in
MATLAB (The MathWorks, Inc., Natick, Mass.). The net‐
work was trained with biodiesel blends B0, B5, B10, B20,
B30, B50, B80, and B100 from three different feedstocks.
Two different batches of rapeseed biodiesel and their blends
were used as a validation set.

RESULTS AND DISCUSSION
The different feedstocks used for biodiesel production

have different amounts and kinds of pigments (table 1). Pig‐
ments make the color of one vegetable oil different from that
of others. Part of those pigment constituents remain in the
biodiesel as impurities. The shape and position of the absor‐
bance curve in the visible range was used to distinguish be‐
tween biodiesels from different feedstocks (fig. 1).

The absorption of vegetable oils in the visible region is
usually due to lipid‐soluble pigments such as carotenoids and
chlorophylls (Angioni et al., 2002). Pure aliphatic acids, es‐
ters, water, and glycerides are colorless substances and do not
affect absorption in the visible range. Therefore, the charac‐
teristic absorption of biodiesel in the visible range (fig. 1) is
caused by pigments but not by other impurities such as glyc‐
erol and alcohol.

When the absorbances of RME from different sources
were recorded, they were similar but did not overlap with
each other (fig. 1). However, the overall shape of the
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Figure 1. Absorption spectra of MME, SME, diesel, and three different
sources of RME in the visible range.

absorbance curves was similar. Therefore, it was concluded
that absolute absorbance is inadequate to predict the percent‐
age of biodiesel in blends of biodiesel and diesel, as the absor‐
bance of parent biodiesels from similar feedstocks may vary.

When biodiesel was mixed with diesel in various propor‐
tions, it was observed that the characteristic shape of the ab‐
sorbance curve did not change; only the magnitude of
absorbance was reduced. The characteristic peaks were grad‐
ually worn off as more of diesel was used in the blend (fig.�2).

When the absorbance of the parent biodiesel and diesel are
known, such as in a blending facility, the absorbance of the
blended fuel at one particular wavelength could reveal the
percentage of biodiesel in the mixture. This method could po‐
tentially be used to check if the fuel has been blended proper‐
ly by taking fuel samples from different parts of the storage
tank. In order to evaluate which wavelengths would perform
better in estimating the blend level, the expected absorbance
of the blended fuel was calculated as:

 )1( BDABSBDABSABS DBDpred −×+×=  (1)

where ABSpred is the predicted absorbance for a blend, ABSBD
is the absorbance of the parent biodiesel, BD is the fraction
of biodiesel in the mixture, and ABS D is the absorbance of
diesel fuel at a particular wavelength. For the diesel fuels
used in this study, the absorbance varied for one fuel to anoth‐
er. However, the absorbance of the blended fuel always fol‐
lowed the linear model given in equation 1. In addition, no
diesel fuel had the characteristic peaks as in the case of bio-
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Figure 2. Absorption spectra of mustard methyl ester (MME) with diesel
blends.

diesel (fig. 2). Since diesel fuel is hard to characterize, as its
detailed composition may vary from one source to another,
no attempt was made to distinguish between different diesel
fuels.

The predicted absorbance for B5, B10, B20, B30, B50,
and B80 from equation 1 was then plotted against the corre‐
sponding measured absorbance, and a linear equation was
fitted. The coefficient of determination (R2) was then calcu‐
lated for each of the wavelengths and plotted for each biodie‐
sel blend (fig. 3). Since the absorbance curve for SME
intersects with that of diesel fuel, the R2 value dropped to
about 0.01 at around 415 nm. Considering the best linear fit,
the wavelengths between 470 and 490 nm gave the highest R2

value and were considered as the best choice of wavelength
to predict the blend level when absorbance of the parent bio‐
diesel is known. The maximum standard error of mean
ABSpred in the range of 470 to 490 nm was found to be 0.02
for MME.

This standard error in absorbance measurement translated
into 0.94% standard error in blend level predicted from mea‐
sured absorbance. Assuming a normal distribution, the actual
blend level could be measured within ±1.85% accuracy at
95% confidence interval. Therefore, equation 1 was modi‐
fied to predict the biodiesel as:

 %85.1100 ±×
−

−=
DBD

D

ABSABS

ABSABS
BD  (2)

where ABS is the measured absorbance of the biodiesel blend.
Equation 2 is valid to be used to predict biodiesel using any
of the wavelengths between 470 and 490 nm.

ANALYSIS OF BIODIESEL SPECTRA WITH APPLICATION OF

THE ARTIFICIAL NEURAL NETWORK

The characteristic shapes of the biodiesel absorption spec‐
tra in the visible range indicated that this information could
be used to detect the biodiesel feedstock. Differences in posi‐
tion of the absorption spectra gave information about biodie‐
sel blend level with regular diesel. A feed‐forward neural
network was a logical choice for using these spectrum shape
and position parameters to identify biodiesel feedstock and
blend level. The method used the characteristics shape of the
biodiesel absorption spectra and compensated for biodiesel
type in predicting blend level when absorption of the parent
biodiesel is not known.

The network was trained with biodiesel from one batch of
RME, one of MME, one of SME and their blends. The absor‐
bance data from the other two batches of RME were used to
verify the network performance. Initial random weights and
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Figure 3. R2 value for the linear line fitted between ABSpred (eq. 1) and ac‐
tual absorbance for blends from B5 to B80.
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Figure 4. Regression analysis between the network response and the cor‐
responding biodiesel blend levels. The perfect fit (1:1 line) is indicated by
the upper line; the lower line indicates the best linear fit.

biases of the neurons influenced the network performance.
However, 2000 epochs were usually sufficient to reduce the
error to a stable level.

The network‐predicted biodiesel blend levels were plotted
against the actual blend levels (fig. 4). The best‐fit linear regres‐
sion line had a slope of 0.9 ± 0.18 and an intercept of 0.13 ±
0.93 at 95% CI. The coefficient of determination (R2) of the re‐
gression line was 0.91. The slope and intercept of the line were
not statistically significant from 1 and 0, respectively. However,
it should be noted that although the predicted blend on average
was close to the actual blend level, individual measurements
could be off by as much as 25% from the measured value. This
can be seen in figure 4; predictions for B50 were as low as B25.
Even though the blend level was not recognized correctly in all
cases, the neural network was able to correctly recognize the
feedstock. Therefore, it was concluded that the visible spectrum
in conjunction with a neural network could be used for feed‐
stock recognition and for rough blend level estimation.

CONCLUSIONS
The visible spectrum of light was investigated to predict bio‐

diesel blend levels. Presence of chlorophyll, phytosterols, caro‐
tenoids, and other coloring pigments give characteristic colors
and absorption spectra to biodiesels made from various oil
sources. When the absorbance of the parent biodiesel being
blended with diesel is known or can be measured, such as in a
biodiesel blending facility, the absorbance of the blended fuel
was found to be the weighted average of the absorbance of neat
biodiesel and diesel. Considering the best linear fit, wavelengths
between 470 and 490 nm gave the highest R2 value and are rec‐
ommended as the best choice of wavelength to predict the blend
level when absorbance of the parent biodiesel is known. The
95% confidence interval of standard error for the measured
blend level was found to be within ±1.85% of the predicted val‐
ue. This method could potentially be used to determine if a fuel
has been blended properly by taking samples from different
parts of the storage tank.

The characteristic shapes of biodiesel absorption spectra in
the visible range indicated that this information could be used
to detect the biodiesel feedstock. The absorbance curve was
approximated with a second‐order polynomial equation, and
coefficients of the polynomials were used as network inputs. It
was concluded that a single wavelength of the visible spectrum
between 470 and 490 nm can be used for accurate blend level
sensing if the spectrum of the parent biodiesel is known. When
the spectrum of the parent biodiesel is unknown, the absorbance
spectrum from 380 to 530 can be used with a neural network for
feedstock recognition and rough blend level estimation.
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